Yokogawa AQ6380 Highest Performance Optical Spectrum Analyzer 1200 – 1650 nm

POAExcluding Tax

Request a Quote

Description

Description

The AQ6380 OSA is the highest performance optical spectrum analyzer from Yokogawa Test&Measurement. Its excellent optical wavelength resolution, accuracy, and close-in dynamic range specifications allow optical signals in close proximity to be clearly separated and precisely measured.

This OSA incorporates smart technology and functionality including an intuitive touchscreen, automated wavelength calibration, and optimized sweep speed, allowing users to operate more efficiently. In addition, the AQ6380 OSA includes gas purging mechanisms, fully-automated wavelength calibration, compatibility with high-resolution and high sample counts, and single-mode fiber input.

Key Features:

  • High wavelength resolution: 5 pm
  • High wavelength accuracy: ±5 pm
  • Wide close-in dynamic range: 65 dB
  • High stray light suppression: 80 dB

New sensitivity settings optimize measurement time

Sensitivity settings have a significant impact on measurement time. The AQ6380 has two modes and 19 sensitivity settings. Shorten measurement time by selecting the optimum sensitivity according to the type of optical signal and the minimum sensitivity requirement. Measurement sensitivity can also be set numerically. The appropriate sensitivity setting is automatically selected when entering the required minimum sensitivity value.

Built-in analysis functions eliminate post-processing tasks

The AQ6380 has built-in analysis functions to characterize optical spectrum from a variety of optical systems and devices including WDM, DFB-LD, EDFA, and filters. The automatic calculation of the major parameters of the device under test will contributes to fast characterization. Analysis functions include DFB-LD, FP-LD, LED, spectral width (peak/notch), SMSR, optical power, WDM (OSNR), EDFA (NF and gain), filter (peak/bottom), and WDM filter (peak/bottom).

DUT-oriented test apps simplify the test process

The appplication mode (APP) transforms an OSA into a versatile machine dedicated to a device under test (DUT). APP mode provides a DUT-specific user interface that navigates the user from configuration settings to test result output without worrying with other OSA settings. The AQ6380 comes pre-installed with several standard applications including WDM testing, DFB-LD testing, and FP-LD testing. Additional optional applications are available for download from the Yokogawa Test&Measurement website.

Backward-compatible remote interface for easy upgrade of test system

Easily build an automated measurement system using a remote-control interface (Ethernet or GP-IB). The remote command set conforms to the Standard Commands for Programmable Instruments (SCPI), compatible with AQ6370 series and AQ6319, as well as proprietary AQ6317-compatible commands, allowing for easy upgrades to existing measurement systems.

OSA Viewer enables emulation and remote control on a PC

Emulate and remotely control the AQ6380 using OSA Viewer, the application software included with the AQ6370 Viewer. OSA Viewer’s user interface and analysis capabilities allow R&D and production users to easily view and analyze waveforms on their PC or laptop. The AQ6380 can be controlled remotely via a direct connection or over a network. The screen image from the AQ6380 displays in real time on remotely-connected PCs or laptops, where you can operate it as if you are using the AQ6380 directly, and data files saved on the AQ6380 are remotely transferable to your computer. These features are ideal when R&D users need to evaluate and analyze measurement data and optimize test conditions and troubleshoot on remote lines, as well as when Production users need to collect and analyze measurement results of remote production lines.

Specification

No Reviews Yet

Write a Review

Share your thoughts. Be the first to leave a review.

Be the first to review “Yokogawa AQ6380 Highest Performance Optical Spectrum Analyzer 1200 – 1650 nm”

Your email address will not be published. Required fields are marked *